Г.М.Бутов, О.М. Иванкина

Сборник заданий для самостоятельной работы по курсу «Химия нефти и газа»

Волжский 2022 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Бутов Г.М., Иванкина О.М.

Сборник заданий для самостоятельной работы по курсу «Химия нефти и газа»

Электронное учебное пособие

УДК. 665.6(07) ББК 26.343.1я73 Б 934

Рецензенты:

руководитель Испытательной лаборатории (РНТЦ) ООО «Технологическая Компания Шлюмберже», к.х.н., доцент *Паршин Г.Ю.*;

доцент кафедры «Электроэнергетика и электротехника», филиал ФГБОУ ВО «НИУ «МЭИ» в г. Волжском, к.т.н. Байдакова Н.В.

Издается по решению редакционно-издательского совета Волгоградского государственного технического университета

Бутов, Г.М.

Сборник заданий для самостоятельной работы по курсу «Химия нефти и газа» [Электронный ресурс]: учебное пособие / Бутов Г.М., Иванкина О.М. ; Министерство науки и высшего образования Российской Федерации, ВПИ (филиал) ФГБОУ ВО ВолгГТУ. – Электрон. текстовые дан. (1 файл: 253 КБ). – Волжский, 2022. – Режим доступа: http://lib.volpi.ru. – Загл. с титул. экрана.

ISBN 978-5-9948-4417-5

В учебном пособии собраны задачи для самостоятельной работы по курсу «Химия нефти и газа». Предназначено для студентов очной и очно-заочной формы обучения направлениям 18.03.01 «Химическая технология».

Илл.2, табл. 1, библиограф.: 8 назв.

ISBN 978-5-9948-4417-5

- © Волгоградский государственный технический университет, 2022
- © Волжский политехнический институт, 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. Методические указания по выполнению и оформлению семестровой работы	6
2. Природный и попутный газы. Применение газа. Расчет физико-химических свойств и состава углеводородных газов	6
3. Расчет физико-химических свойств и состава нефти и нефтепродуктов	12
3.1 Компонентный состав	12
3.2 Средняя температура кипения нефтяной фракции	14
3.3 Плотность нефти и нефтепродуктов	14
3.4 Молярная масса	15
3.5 Вязкость	16
4. Химический состав нефти	25
4.1 Алканы (парафиновые или метановые углеводороды)	26
4.2. Циклоалканы (нафтены, цикланы)	29
4.3. Алкены (олефины)	34
4.4. Алкадиены (диолефины)	37
4.5. Алкины (ацетиленовые углеводороды)	41
4.6. Ароматические углеводороды (арены)	44
4.7. Гетероатомные соединения нефти	48
5. Основные процессы переработки нефти	51
6. Варианты контрольных заданий	55
Литература	56
Приложения	57

ВВЕДЕНИЕ

Курс «Химия нефти и газа» в программе студентов, обучающихся по направлению «Химическая технология» является важным, поскольку нефть и газ — главная статья дохода российской экономики.

В настоящее время нефть и газ являются основными источниками энергии в большинстве стран мира. В России топливно-энергетический комплекс является одной из основ экономики. Из нефти вырабатываются бензины, керосины, дизельное, реактивное и другие виды топлива.

Другое важнейшее направление использования нефти и газа — в качестве сырья для производства самых разнообразных продуктов нефтехимической, строительной и других отраслей промышленности: полимерных материалов, пластмасс, синтетических волокон и каучуков, смазочных и специальных масел, моющих средств, лаков, красок, растворителей, битумов, кокса и множества других. В этом отношении нефть и газ являются на сегодняшний день незаменимыми природными объектами.

В связи с этим студенты, обучающихся по направлению «Химическая технология», обязаны владеть информацией и уверенно разбираться в физических и физико-химических и химических свойствах нефти и газа, включая получение и применение целевых конечных продуктов и материалов на основе углеводородного сырья. В результате освоения дисциплины студенты должны знать:

- фракционный, компонентный и элементный состав нефтей;
- основные физические свойства природного газа, нефтей и нефтепродуктов;
- методы расчета физических свойств природного газа, нефтей и нефтепродуктов;
- методы разделения и анализа нефтяных систем;
- основные направления переработки нефти и газа;
- гипотезы происхождения нефти;

• возможные химические взаимодействия компонентов нефтяных систем с химическими реагентами широко используемыми при добыче, транспортировке и переработке нефти и газа.

Дисциплина «Химия нефти и газа» относится к циклу профессиональных дисциплин и входит в его базовую часть. Успешно освоить материал курса позволяет изучение целого ряда предшествующих дисциплин: «Общая и неорганическая химия», «Органическая химия», «Химия гетероциклических соединений», «Аналитическая химия», «Физическая химия», «Общая химическая технология» и др. Задания для самостоятельного решения, изложенные в данном пособии, требуют от студента применение знаний и навыков, полученных при изучении перечисленных курсов. Но в то же время в них присутствует специфика, присущая данной дисциплине.

В соответствии со стандартными требованиями к образованности специалиста в результате изучения теоретического курса и прохождения лабораторного практикума по химии нефти задачей дисциплины является получение студентом необходимого объема знаний в области химии нефти и газа, приобретение навыка применять эти знания для решения практических задач.

В пособии представлены задания по следующим разделам курса «Химия нефти и газа»:

- основные физические свойства нефти и газа,
- химический состав нефти (алканы, циклоалканы, арены, алкены, алкадиены, алкины, гетероатомные соединения нефти),
- природный и попутный газы,
- основные процессы переработки нефти.

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕ-НИЮ СЕМЕСТРОВОЙ РАБОТЫ

Семестровая работа (СР) является самостоятельной работой студентов, которая направлена на закрепление, углубление и обобщение знаний по дисциплине «Химия нефти и газа».

В конце изучения курса студент должен выполнить СР, состоящую из 10-ти задач. Выполнение СР осуществляется студентом во внеаудиторное время, предусмотренное учебными планами для самостоятельной работы.

При оформлении CP номер и текст задания набираются на компьютере. Решение задачи или ответ на теоретический вопрос допускается выполнять от руки. CP должна быть аккуратно оформлена и представлена не позднее, чем за 2 недели до экзаменационной сессии.

Таблица вариантов контрольных заданий приведена в конце пособия.

Семестровая работа, выполненная не по своему варианту, преподавателем не рецензируется и не засчитывается как сданная.

Изучение данного курса помимо контрольной работы включает в себя посещение лекций, выполнение лабораторных работ и сдачи экзамена (зачета).

2. ПРИРОДНЫЙ И ПОПУТНЫЙ ГАЗЫ. ПРИМЕНЕНИЕ ГАЗА. РАСЧЕТ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ И СОСТАВА УГЛЕ-ВОДОРОДНЫХ ГАЗОВ

Важными природными источниками углеводородов являются горючие газы (природные и попутные). Главная составная часть природных газов — метан (до 98%). Попутные газы, кроме метана (до 70%), содержат этан, пропан, бутан и пары низкокипящих жидких углеводородов, при этом процентное содержание компонентов зависит от месторождения.

Общие свойства газовых смесей

Поведение газообразных веществ достаточно полно объясняет кинетическая теория газов, основу которой составляют законы газового состояния

Бойля-Мариотта, Гей-Люссака и Шарля. Эти законы могут быть выражены объединенным уравнением (законом) Менделеева- Клайперона:

$$pV = vRT$$
 (1.1)

Здесь R — универсальная газовая постоянная, значение которой зависит от выбора системы единиц. Так, в СИ, где давление выражено в паскалях, объем — в кубических метрах и температура — в кельвинах, для одного моля газа R=8,314 Дж/(моль·К).

Зависимость между парциальными давлениями p_i компонентов газовой смеси и общим давлением p в системе устанавливается законом Дальтона

$$p = p_1 + p_2 + \dots + p_n = \Sigma p_i, \tag{1.2}$$

где $p_i = p_i'$.

В соответствии с законом Рауля в условиях равновесия можно записать

$$p=x_1'\,p_{_{H_1}}+x_2'\,p_{_{H_2}}+...+x_n'\,p_{_{H_n}}=\Sigma x_i'\,p_{_{H_i}}$$
 или $p_{_{H_i}}x_i'=py_i'$.

Указанные закономерности справедливы для идеальных газов. Углеводородные газы и нефтяные пары можно приближенно считать идеальными газами, особенно при невысоких давлениях.

Приведение объема газа к нормальны условиям осуществляется по формуле:

$$V_0 = V \frac{T_0 p}{T p_0}; (1.3)$$

Плотность. Как и для жидкости, *плотность газа* может быть выражена абсолютным или относительным значением. Абсолютная плотность газа равна его массе в единице объема, в СИ она выражается в килограммах на кубический метр ($\kappa \Gamma/M^3$). Величину, обратную плотности, называют удельным объемом и измеряют в кубических метрах на килограмм ($M^3/\kappa \Gamma$).

При определении относительной плотности газов и паров нефтепродуктов в качестве стандартного вещества берется воздух при нормальных условиях (T=273 K, $p=101,3 \text{ к}\Pi a$). Отношение массы газа m к массе воздуха

 m_{e} , взятых в одинаковых объемах и при тех же температуре и давлении, дает **относительную плотность газа**:

$$\rho_{\scriptscriptstyle g} = \frac{m}{m_{\scriptscriptstyle g}} \tag{1.4}$$

Плотность газа при нормальных условиях:

$$\rho_0 = \frac{M}{22.4} \tag{1.5}$$

Тогда для относительной плотности газа по воздуху можно записать:

$$\rho_{\hat{a}} = \frac{M}{28.9} \tag{1.6}$$

где 28,9 – молярная масса воздуха, г/моль.

Если записать уравнение Клапейрона-Менделеева в виде m/V = pM/RT, то левая часть представляет собой плотность газа ρ , т.е.

$$\rho = pM/RT. \tag{1.7}$$

Для определения плотности газа при любых условиях пользуются формулой:

$$\rho = \rho_0 \frac{T_0 \cdot p}{T \cdot p_0} = \frac{M}{22.4} \cdot \frac{273 \cdot p}{T \cdot 101.3}$$
 (1.8)

Пример 1.1

В баллоне вместимостью $0.2~{\rm m}^3$ при давлении $3\cdot 10^5~{\rm \Pi a}$ и температуре $20^{\circ}{\rm C}$ находится газовая смесь, средняя молярная масса которой M=48 г/моль. Определить массу газовой смеси.

Решение.

Для определения массы газа используем уравнение Менделеева-Клапейрона. Подставив известные значения параметров, определим массу газа:

$$m = \frac{p \cdot V \cdot M}{R \cdot T} = \frac{3 \cdot 10^5 \cdot 0.2 \cdot 48}{8.314 \cdot 293} = 1182\tilde{a}.$$

Пример 1.2

Газ при давлении 230 кПа и температуре 46° С занимает объем 1,5 м³. Привести объем газа к нормальным условиям.

Решение.

Нормальный объем газа определим при T_0 =273 К и p =101,3 кПа:

$$V_0 = V \frac{T_0 \cdot p}{T \cdot p_0} = 1,5 \frac{273 \cdot 230}{(273 + 46) \cdot 101,3} = 2,9 M^3$$

Пример 1.3

Относительная плотность газа равна 1,10. Определить его абсолютную плотность при 150° С и 750 кПа.

Решение.

Найдем молярную массу газа: $M=1,1\cdot28,9=31,8$ кг/моль. Абсолютную плотность газа определим по формуле (1.8):

$$\rho = \rho_0 \frac{T_0 \cdot p}{T \cdot p_0} = \frac{M}{22.4} \cdot \frac{273 \cdot p}{T \cdot 101.3} = \frac{31.8}{22.4} \cdot \frac{273 \cdot 750}{(273 + 150) \cdot 101.3} = 6.78 \kappa z / M^3$$

Задания для самостоятельного решения

- 1. Определите молекулярный вес попутного газа, зная, что он состоит из 0,5 моля метана, 0,25 моля этана и 0,25 моля углекислого газа.
- 2. Определите плотность попутного газа и плотность газа по отношению к воздуху, учитывая, что средний молекулярный вес воздуха приблизительно равен 29 кг, а молекулярный вес газа 26,5 кг.
- 3. Определить вместимость баллона, в который можно закачать 6 $\rm m^3$ газа, измеренного при нормальных условиях. Максимальное давление в баллоне 15 $\rm M\Pi a.$
- 4. Во сколько раз возрастет давление в герметичном газовом резервуаре, если температура окружающего воздуха повысится с 10 до 24°С?
- 5. При давлении 360 кПа и температуре 400 К газ занимает объем 1,2 м 3 . Найти число молей газа.
- 6. Газ в количестве 9 кг находится в сосуде вместимостью 3 м 3 при 298 К и 462 кПа. Найти молярную массу газа.
- 7. Определить объем газа при нормальных условиях, если при температуре

- 120° С и давлении 790 кПа его объем равен 16,3 м³.
- 8. Определить плотность пропана при 150 кПа и 80°С.
- 9. Средняя молярная масса водородсодержащего газа, применяемого в процессе каталитического риформинга, равна 3,5 г/моль. Рассчитать плотность этого газа при 450°C и 3 МПа.
- 10. Газовая смесь состоит из метана и водорода, парциальные давления которых равны 478 кПа и 279 кПа соответственно. Определить содержание (в молярных долях) компонентов смеси.
- 11. Рассчитать плотность газовой смеси, состоящей из 14 кг пропана, 11 кг этана и 8 кг этилена. Плотности индивидуальных газов взять прил.16.
- 12. Смешали 3 моля пропана и 7 молей пропилена. Какова плотность полученной смеси?
- 13. Природный газ Астраханского происхождения имеет следующий состав (в объемных процентах): $CH_4-47,48$; $C_2H_6-1,92$; $C_3H_8-0,93$; $C_4H_{10}-0,56$; $C_5H_{12}-3,08$; $N_2-1,98$; $CO_2-21,55$; $H_2S-22,5$. Определите плотность газа при нормальных условиях.
- 14. Природный газ одного из месторождений содержит метан (объемная доля 92%), этан (3%), пропан (1,6%), бутан (0,4%), азот (2%), оксид углерода (IV), пары воды и другие негорючие газы (1%). Какой объем воздуха потребуется для сжигания газа объемом 5 м³ (н.у.)? Объемная доля кислорода в воздухе составляет 21%. Объем воздуха рассчитайте при нормальных условиях.
- 15. Природный газ объемом 240 л (н.у.) использовали для получения ацетилена. Объемная доля метана в газе составляет 85%. Определите объем образовавшегося ацетилена, приведенный к нормальным условиям, если его выход составил 60%.
- 16. Из природного газа объемом 40 л (н.у.) получили хлорметан массой 30,3 г. Определите объемную долю метана в природном газе, если выход хлорметана равен 40% от теоретически возможного.

- 17. Какой объем природного газа, который содержит метан (объемная доля 96%), азот, благородные газы, оксиды углерода и незначительные количества других примесей, потребуется для получения водорода, при помощи которого можно восстановить оксид молибдена (VI) массой 14,4кг? Водород получают конверсией природного газа с водяным паром. Выход водорода составляет 80%. Объем рассчитайте при нормальных условиях.
- 18. Какой объем хлороформа плотностью 1,5 г/мл можно получить из природного газа объемом 60 л (н. у.), объемная доля метана в котором составляет 90%. Выход хлороформа равен 70% от теоретически возможного.
- 19. Добыто 620 млрд. м³ природного газа. Вычислите массу этого количества газа, считая, что он в основном состоит из метана.
- 20. Что называется попутным газом и что называется природным газом? В чем принципиальное отличие природного газа от попутного?
- 21. На сжигание природного газа объемом 200 л, содержащего метан, этан и негорючие примеси, затратили кислород объемом 395 л. Объемы газов измерены при нормальных условиях. Определите объемные доли метана и этана в газе, если объемная доля негорючих примесей составляет 5%.
- 22. Составьте уравнения реакций, с помощью которых из попутного нефтяного газа можно получить непредельные углеводороды.
- 23. Составьте уравнения реакций получения из природного газа водорода, сажи, этилена, ацетилена.
- 24. Напишите эмпирические и структурные формулы углеводородов, которые входят в состав природного газа и попутного нефтяного.
- 25. С помощью химических реакций приведите примеры применения попутного газа.
- 26. Какие преимущества по сравнению с другими видами топлива имеет природный газ? Для каких целей используется природный газ в химической промышленности?

- 27. Какой объем хлороформа ($\rho = 1,5$ г/мл) можно получить из 160 л природного газа (н.у.), содержащего 92% метана? Выход хлороформа составляет 76% от теоретического.
- 28. Определить стандартное изменение энтальпии ΔH^0 реакции горения метана, зная, что энтальпии образования $CO_{2(r)}$, $H_{2(r)}$ и $CH_{4(r)}$ равны соответственно 393,5; -241,8 и -74,9 кДж/моль.
- 29. Найти массу метана, при полном сгорании которой (с образованием жидкой воды) выделяется теплота, достаточная для нагревания $100 \, \Gamma$ воды от 20^{0} C до 30^{0} C. Мольную теплоемкость воды принять равной $75,3 \, \text{Дж/моль} \cdot \text{K}^{0}$.
- 30. Сколько молекул диоксида углерода находится в 1 л природного газа, если объемное содержание CO_2 составляет 0,03% (н.у.)?

3. РАСЧЕТ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ НЕФТИ И НЕФТЕ-ПРОДУКТОВ

Нефть представляет собой сложную смесь углеводородов и органических соединений серы, азота и кислорода. Поэтому ее физико-химические свойства могут выражаться лишь усредненными характеристиками. Практические потребности привели к необходимости характеризовать природный газ, нефть и её фракции значительным числом показателей.

3.1. Компонентный состав

В практических расчетах состав многокомпонентной смеси выражается в долях или процентах. Соотношение между долями и процентами 1:100. В нефтепереработке принято обозначать доли, характеризующие состав жидкой смеси буквой x, а состав газовой или паровой смеси — буквой y. Физический смысл величин при этом сохраняется.

Массовая доля $x_i(y_i)$ – отношение массы компонента $x_i(y_i)$ к массе смеси:

$$x_{i} = \frac{m_{i}}{m};$$

$$\Sigma x_{i} = 1 \tag{3.1}$$

Молярная доля x'_i(y'_i) – отношение числа молей N_i компонента к общему числу молей N смеси:

$$x_{i} = \frac{N_{i}}{N};$$

$$\Sigma x_{i} = 1 \tag{3.2}$$

Пересчет массового состава в молярный и обратный пересчет осуществляются по формулам:

$$x_{i}^{'} = \frac{x_{i}^{'} / M_{i}}{\sum (x_{i}^{'} / M_{i})};$$

$$x_{i}^{'} = \frac{x_{i}^{'} \cdot M_{i}^{'} / \sum (x_{i}^{'} \cdot M_{i})}{\sum (x_{i}^{'} \cdot M_{i})}$$
(3.3)

где M_i – молярная масса компонента, кг/моль

Объемная доля x_{Vi} (y_{Vi}) — отношение объема компонента V_i к объему всей смеси V:

$$x_{Vi} = \frac{V_i}{V};$$

$$\sum x_{Vi} = 1$$
(3.4)

Для пересчета объемного состава в массовый и обратно необходимо знать плотность ρ_i каждого компонента:

$$x_{Vi} = \frac{x_i / \rho_i}{\sum (x_i / \rho_i)};$$

$$x_i = \frac{x_{Vi} \cdot \rho_i / \rho_i}{\sum (x_{Vi} \cdot \rho_i)}$$
(3.5)

Для жидкой смеси прямой пересчет объемных долей в молярные довольно сложен, поэтому лучше его проводить с помощью массовых долей.

3.2. Средняя температура кипения нефтяной фракции

Любая нефтяная фракция (равно как и нефть) представляет собой сложную смесь углеводородов, выкипающих в некотором температурном интервале. Однако во многие расчетные формулы входит определенная температура, характеризующая кипение нефтепродукта. Поэтому в практике используется понятие *средней температуры кипения нефтяной фракции*. Существует несколько ее модификаций, но наиболее употребительной является средняя молярная температура кипения $t_{cp.m}$, которая рассчитывается по формуле:

$$t_{cp.M} = \frac{N_1 t_1 + N_2 t_2 + \dots + N_n t_n}{N_1 + N_2 + \dots + N_n} = \sum x_i t_i$$
 (3.6)

где t_i – среднеарифметическая температура кипения узких фракций, °С.

Приближено среднюю температуру можно также определить как среднее арифметическое начальной и конечной температур кипения.

3.3. Плотность нефти и нефтепродуктов

Плотностью называется масса вещества, заключенная в единице объема. Единицей измерения плотности в системе СИ служит $\kappa \Gamma/m^3$.

В исследовательской практике определяется относительная плотность. **Относительной плотностью** называют отношение плотности нефти или нефтепродукта при 20° С к плотности дистиллированной воды (эталонного вещества) при 4° С. Относительную плотность обозначают $\rho^{20}{}_{4}$.

Плотность нефти и нефтепродуктов зависит от температуры. Зависимость основана на линейном законе (формула Д.И. Менделеева):

$$\rho_{\Delta}^{t} = \rho_{\Delta}^{20} - \alpha(t - 20) \tag{3.7}$$

где ρ^{t}_{4} – относительная плотность при температуре анализа;

 ρ^{20}_{4} – относительная плотность при 20°С;

α – средняя температурная поправка.

Значения температурной поправки даны в приложении 1.

В некоторые формулы, применяемые в практических расчетах, входит значение плотности ρ_{15}^{15} . Для пересчета используют следующую зависимость:

$$\rho_4^{20} = \rho_{15}^{15} - 5\alpha \tag{3.8}$$

Все нефтепродукты представляют собой смеси углеводородов. Среднюю плотность нефтепродукта определяют по правилу смешения и аддитивности:

$$\rho_{cp} = \frac{\rho_1 \cdot V_1 + \rho_2 \cdot V_2 + \dots + \rho_i \cdot V_i}{V_1 + V_2 + \dots V_i}$$
(3.9)

$$\rho_{cp} = \frac{m_1 + m_2 + \dots + m_i}{m_1 / \rho_1 + m_2 / \rho_2 + \dots + m_i / \rho_i}$$
(3.10)

где ρ_i – плотность i-го компонента фракции;

 V_i – объем i-го компонента фракции;

 m_i – масса і-го компонента фракции.

3.4. Молярная масса

Молярная масса нефти и нефтепродуктов имеет усредненное значение и зависит от состава и количественного соотношения компонентов смеси. Как правило, молярная масса возрастает с увеличением температуры кипения и плотности фракции. Может быть определена экспериментально или рассчитана по эмпирическим зависимостям. В практических расчетах обычно используют единицу измерения молярной массы кг/кмоль.

С повышением температуры кипения нефтяных фракций молярная масса растет. Эта закономерность лежит в основе формулы Б.М. Воинова для определения молярной массы М нефтяной фракции:

$$M = 60 + 0.3t_{cp,M} + 0.001t_{cp,M}^{2}$$
 (3.11)

Данная формула дает достаточно точный результат для парафиновых углеводородов и узких бензиновых фракций. Для более точных расчетов в формулу (2.11) вводят характеризующий фактор K:

$$K = \frac{1,216 \cdot \sqrt[3]{T_{cp.m.}}}{\rho_{15}^{15}}$$
 (3.12)

где $T_{cp.м}$ – средняя молярная температура кипения, К; ρ_{15}^{15} – относительная плотность нефтепродукта.

С учетом характеризующего фактора K:

$$M = (7K - 21,5) + (0,76 - 0,04)t_{cp.m.} + (0,0003K - 0,00245)t_{cp.m.}^{2}$$
 (3.13)

Зависимость между молярной массой и плотностью выражает формула Крэга:

$$M = \frac{44,29\rho_{15}^{15}}{1,03 - \rho_{15}^{15}} \tag{3.14}$$

Молярную массу смеси рассчитывают по правилу аддитивности, исходя из известного состава и молярных масс компонентов:

$$M = \sum M_i x_i';$$

$$M = \frac{1}{\sum (x_i/M_i)}$$
(3.15)

3.5. Вязкость

Вязкость — важнейший физико-химический параметр, используемый при подсчете запасов нефти, проектировании разработки нефтяных месторождений, выборе способа транспортировки и схемы переработки нефти. Различают *динамическую*, *кинематическую* и *условную* (удельную) вязкость.

Вязкостью или внутренним трением жидкости называют свойство, проявляющееся в сопротивлении, которое жидкость оказывает перемещению ее частиц под влиянием действующих на нее сил.

Динамическая вязкость η — это отношение действующего касательного напряжения к градиенту скорости при заданной температуре. Единица измерения — паскаль-секунда (Па·с). В основе определения динамической вяз-

кости лежит измерение времени истечения жидкости через капиллярные трубки.

Кинематическая вязкость v – это отношение динамической вязкости к плотности при той же температуре:

$$v=\eta/\rho;$$
 (3.16)

Единицей измерения кинематической вязкости в системе СГС является 1 стокс (Ст). 1 Ст= $1 \text{ cm}^2/\text{c}$. В системе СИ размерность кинематической вязкости – m^2/c .

Для характеристики вязких нефтепродуктов иногда применяют *условную вязкость* (ВУ). Она выражается отношением времени истечения 200 мл нефтепродукта из стандартного вискозиметра при температуре испытания к времени истечения такого же количества дистиллированной воды при 20°C. Условная вязкость измеряется в градусах ВУ – °ВУ. Пересчет условной вязкости к кинематическую осуществляют по таблице, приведенной в приложении 3.

Вязкость нефти и нефтепродуктов уменьшается с повышением температуры. При необходимости вязкость несложно пересчитать с одной температуры на другую с помощью номограммы (приложение 2). Номограмма дает возможность по двум известным величинам вязкости при любых температурах методом интер- или экстраполяции найти вязкость того же нефтепродукта для заданной температуры.

Качество масел зависит от степени изменения вязкости с повышением температуры. Оценка вязкостно-температурных свойств производится по показателю, который называют индексом вязкости — ИВ. Индекс вязкости определяется по номограмме (приложение 4) по известным значениям кинематической вязкости при двух температурах (обычно 50 и 100°С). С улучшением качества масла его индекс вязкости возрастает.

Вязкость – не аддитивное свойство, поэтому вязкость смеси нельзя вычислить по правилу аддитивности. Наиболее надежный способ определения вязкости в этом случае экспериментальный. Существует ряд эмпирических формул, но они дают лишь приблизительный результат. На практике достаточно широко пользуются номограммой, приведенной в приложении 6. Используя её можно определить вязкость смеси двух нефтепродуктов, смешанных в определенном соотношении при данной температуре.

Примеры решения задач

Пример 3.1

Смешали три масляных фракции в следующих количествах: m_1 =81 кг; m_2 =135 кг; m_3 =54 кг с молярными массами M_I =320; M_2 =360; M_3 =390.

Определить массовую и молярные доли каждой фракции в смеси.

Решение:

Найдем общую массу смеси:

$$m = m_1 + m_2 + m_3 = 81 + 135 + 54 = 270 \text{ kg}.$$

Определим массовую долю каждой фракции:

$$x_1 = \frac{81}{270} = 0.3$$
 $x_2 = \frac{135}{270} = 0.5$ $x_3 = \frac{54}{270} = 0.2$

Определим сумму отношений массовых долей фракций к их молярным массам:

$$\frac{0.3}{320} + \frac{0.5}{360} + \frac{0.2}{390} = 2.84 \cdot 10^{-3}$$

Находим молярные доли каждой фракции:

$$x'_{1} = \frac{0.3/320}{2.84 \cdot 10^{-3}} = 0.33;$$
 $x'_{2} = \frac{0.5/360}{2.84 \cdot 10^{-3}} = 0.49;$ $x'_{3} = \frac{0.2/390}{2.84 \cdot 10^{-3}} = 0.18.$

Для проверки правильности полученных результатов суммируем молярные доли: 0,33+0,49+0,18=1.

Сумма равна единице, следовательно, пересчет выполнен верно.

Пример 3.2.

В качестве сырья каталитического риформинга для получения ксилолов используется узкая бензиновая фракция 120-140°C с относительной плотностью $\rho_4^{20} = 0,7513$. Содержание узких 5-ти градусных фракций:

Интервал	120-125	125-130	130-135	135-140
кипения, °С				
Мольная	0,20	0,24	0,30	0,26
доля				

Найти среднюю молярную массу сырья.

Решение

Вначале определим средние арифметические температуры кипения 5-градусных фракций:

$$t_1 = \frac{120 + 125}{2} = 122,5^{\circ}C;$$
 $t_2 = 127,5^{\circ}C;$ $t_3 = 132,5^{\circ}C;$ $t_4 = 137,5^{\circ}C;$

Найдем среднюю молярную температуру кипения сырья:

$$t_{\tilde{n}\delta,i} = \Sigma x_i t_i = 0,20 \cdot 122,5 + 0,24 \cdot 127,5 + 0,30 \cdot 132,5 + 0,26 \cdot 137,5 = 130,6^{\circ} C$$

Пересчитываем плотность при 20°C на плотность при 15°C:

$$\rho_{15}^{15} = \rho_4^{20} + 5\gamma = 0.7513 + 5 \cdot 0.000831 = 0.7554$$

Рассчитываем характеризующий фактор K:

$$K = \frac{1,216 \cdot \sqrt[3]{T_{cp.m.}}}{\rho_{15}^{15}} = \frac{1,216 \cdot \sqrt[3]{130,6 + 273}}{0,7554} = 11,9$$

По формуле (3.13) вычислим молярную массу.

Вычисляем молярную массу по формуле Крега (3.14):

$$M = \frac{44,29\rho_{15}^{15}}{1,03-\rho_{15}^{15}} = \frac{44,29\cdot0,7554}{1,03-0,7554} = 121,84$$
кг/кмоль.

Пример 3.3

Условная вязкость масляной фракции при 100 и 50°C равна соответственно 2,6 и 20°ВУ. Найти ее условную вязкость при 70°С.

Решение.

Для нахождения неизвестной вязкости воспользуемся номограммой (прил.). На координатной сетке номограммы обозначим две точки с координатами 100°C, 2,6°ВУ и 50°С, 20°ВУ (см. рис.1). Через найденные точки А и В проведем прямую. Отметим точку С, где прямая пересечет вертикаль, соответствующую 70°С. Проецируя точку С на ось ординат, получим значение условной вязкости при 70°С: ВУ 70=6,8.

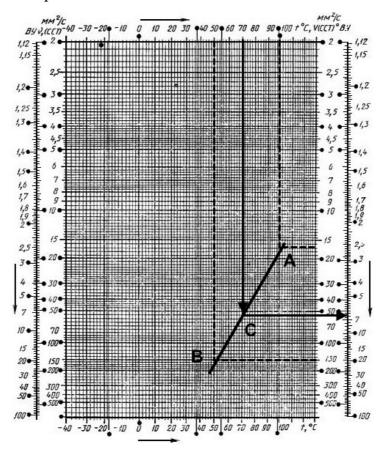


Рис. 1. Определение вязкости масел при различных температурах по номограмме

Пример 3.4

Вязкость моторного масла при 100° C составляет 10,5 мм 2 /с, а при 50° C -59 мм 2 /с. Определить индекс вязкости масла ИВ.

Решение.

На ординатных осях вязкости и температуры отметим точки, соответствующие величинам v_{50} =10,5 мм²/с и t=100°С (см. рис.2), и проведем через них прямую линию. Вторую линию проведем через две другие точки: v_{50} =59 мм²/с и t=50°С. Точка пересечения двух прямых будет находиться на кривой, обозначенной 100. Следовательно, индекс вязкости масла равен 100 (ИВ=100).

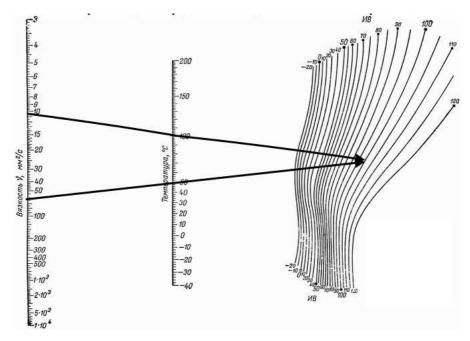


Рис. 2. Определение индекса вязкости нефтяных масел по номограмме

Пример 3.5.

Для получения товарного нефтепродукта необходимо смешать $20\%_{o6}$ моторного топлива с вязкостью 35 сСт при 50° С и $80\%_{o6}$ дизельного топлива вязкостью 5 сСт при 15° С. Определить вязкость полученной смеси при 20° С.

Решение.

По номограмме (приложение 5) определяют вязкость обоих сортов топлива при 20°С. Получают, что для дизельного топлива вязкость при 20°С равна 4,4 сСт, а для моторного – 200 сСт. Затем на номограмме приложение 6 отмечают точку 4,4 сСт, соответствующую 100% дизельного топлива (слева), и точку 200 сСт, соответствующую 100% моторного топлива (справа). Полученные точки соединяют прямой линией. Из точки, соответствующей процентному соотношению 20/80, проводят перпендикуляр до пересе-

чения с нанесенной прямой линией. Точка пересечения их дает значение вязкости смеси 7,3 сСт.

Задачи для самостоятельного решения

- 31. Ароматический концентрат представляет собой смесь, состоящую из 120 кг бензола, 75 кг толуола и 25 кг этилбензола. Найти массовый и молярный состав смеси.
- 32. Для приготовления пробы товарного бензина смешали в соотношении 1:1 по массам прямогонную бензиновую фракцию (M=113 кг/кмоль, ρ =732 кг/м³) и бензин каталитического риформинга (M=106 кг/кмоль, ρ =791 кг/м³). Определить молярный и объемный состав полученной смеси.
- 33. Дана смесь двух нефтяных фракций. Объем первой фракции V_1 =36 м³, ее плотность ρ_1 =802 кг/м³, соответственно для второй фракции V_2 =76,5 м³, ρ_2 =863 кг/м³. Найти массовую долю каждой фракции.
- 34. Массовое содержание изо-октана в эталонной смеси 70%, н-гептана 30%. Определить массовые и молярные доли компонентов.
- 35. Дана смесь двух бензиновых фракций самотлорской нефти, имеющих следующие характеристики:

	Массовое содержание, %	Молярная масса, кг/кмоль
Фракция 105°C	35	103
Фракция 120°C	65	112

Найти среднюю молярную температуру кипения смеси.

36. Определить температуру кипения масляного погона, если известен его состав:

	Молярная доля	
Фракция 420-436°C	0,45	
Фракция 436-454°C	0,30	
Фракция 454-470°C	0,25	

- 37. Смешали 500 кг нефтяной фракции с температурой кипения 85°С и 700 кг фракции с температурой кипения 115°С. Определите среднюю молярную массу смеси и её температуру кипения.
- 38. Определите среднюю молярную массу широкой фракции, состоящей из 20% бензина с $M=110,\,40\%$ лигроина с $M=150,\,20\%$ керосина с M=20 и 20% газойля с M=250.
- 39. Определите относительную плотность нефтепродукта ρ_4^{20} , если у него $\rho_4^{15} = 0.7586 \, .$
- 40. Относительная плотность бензиновой фракции ρ_4^{20} =0,7560. Какова относительная плотность этой фракции при 50°C?
- 41. Определить относительную плотность смеси, состоящей из 250 кг бензина плотностью ρ_4^{20} =0,756 и 375 кг керосина плотностью ρ_4^{20} =0,826.
- 42. Определить относительную плотность смеси следующего состава (об.%)

	% об	$ ho_{\scriptscriptstyle 4}^{\scriptscriptstyle 20},$ кг/ $^{ m M}^{ m 3}$
Бензин	25	756
лигроин	15	785
керосин	60	837

- 43. Определить молекулярную массу нефтяной фракции, если температура кипения равна 113°C.
- 44. Смесь состоит из трёх компонентов, масса которых 459, 711 и 234 кг, а относительная плотность (ρ_4^{20}) равна 0,765; 0,790 и 0,780 г/мл, соответственно. Определите относительную плотность этой смеси ρ_4^{20} .
- 45. Для получения высокооктанового бензина смешали прямогонный бензин и бензиновый алкилат:

Средняя моляр-	Плотность ρ_4^{20} ,	Молярная доля
ная температура кипения, °С	кг/м ³	

Прямогонный бензин	134	749,8	0,9
Бензиновый алкилат	106,6	699,3	0,1

Рассчитать молярную массу поученного продукта по формулам Войнова и Крега.

46. Для получения высокооктанового бензина смешали прямогонный бензин и бензин каталитического крекинга:

Средняя моляр-	Плотность ρ_4^{20} ,	Молярная доля
ная температура	$\kappa\Gamma/M^3$	
кипения, °С		
134	749,8	0,4
106,0	743,5	0,6
	ная температура кипения, °C 134	ная температура кипения, °C 749,8

Рассчитать молярную массу поученного продукта по формулам Войнова и Крега.

- 47. Кинематическая вязкость нефти приволжского месторождения v_{20} =8,35 мм²/с. Определить ее условную и динамическую вязкости при той же температуре, если ρ^{20}_{4} = 0,8231.
- 48. Фракция 240-350°C нефти имеет кинематическую вязкость v_{20} =8,4 мм 2 /с и v_{50} =3,6 мм 2 /с. Найти кинематическую и условную вязкости этой фракции при 70°C.
- 49. Фракция нафтенопарафиновых углеводородов, выделенная из масляного погона, имеет кинематическую вязкость v_{50} =31 мм²/с и v_{100} =7 мм²/с. Каков индекс вязкости фракции?
- 50. Моторное масло с $v_{100}=8\cdot10^{-6}$ м 2 /с и ИВ=95 эксплуатируется в двигателе автомобиля. Какова будет вязкость масла в момент запуска двигателя при температуре 10° C?

4. ХИМИЧЕСКИЙ СОСТАВ НЕФТИ

Нефть представляет собой смесь около 1000 индивидуальных веществ:

- жидкие углеводороды (> 500 веществ, 80—90 % масс);
- гетероатомные соединения (4—5 % :сернистые (около 250 веществ); азотистые (> 30 веществ) и кислородные (около 85 веществ);
- металлоорганические соединения (в основном ванадиевые и никелевые);
- растворённые углеводородные газы (C_1 - C_4 , от десятых долей до 4%);
- вода (от следов до 10 %);
- минеральные соли (хлориды, 0,1—4000 мг);
- механические примеси.

В данном разделе пособия представлены задания, посвященные химическим свойствам основным компонентам нефти.

4.1. Алканы (парафиновые или метановые углеводороды)

Углеводороды этого класса составляют основную часть нефти. Их содержание может колебаться от 20 до 50% и представлены структурами нормального или слаборазветвленного строения. Для большинства нефтей характерно преобладание алканов нормального строения.

Попутные газы, выделяющиеся при добыче нефти, в основном содержат метан (до 70%) и низшие газообразные алканы.

В бензиновые фракции попадают алканы, имеющие в молекуле от 5 до 10 атомов углерода (C_5 - C_{10}). Во фракциях нефти, выкипающих выше 300°C, в значительных количествах могут содержаться твердые алканы (парафины) (C_{17} и выше).

Задания для самостоятельно решения

61. Напишите структурные формулы изомерных предельных углеводородов состава C_7H_{16} , главная цепь которых состоит из пяти углеродных атомов, и

назовите их по систематической номенклатуре. Укажите число первичных, вторичных, третичных и четвертичных атомов углерода в каждом изомере.

- 62. Приведите уравнение реакции крекинга гексадекана.
- 63. Напишите структурные формулы всех предельных углеводородов с пятью атомами углерода в главной цепи, плотность паров которых по водороду равна 50. Назовите их по систематической номенклатуре.
- 64. При гидролизе карбида алюминия образовался метан объемом 2,24 л (н.у.). Вычислите массу образовавшегося гидроксида алюминия.
- 65. Вычислите элементный состав (% по массе) предельных углеводородов, плотность паров которых по водороду равна 36.
- 66. Напишите все изомеры соединений состава C_8H_{18} , C_4H_7Br .
- 67. При дегидрировании бутана объемом 10 л выделилось 20 л водорода. Установите молекулярную формулу образовавшегося продукта. Объемы газов измерены при одинаковых условиях.
- 68. Напишите структурные формулы всех возможных изомерных радикалов: C_2H_5 , C_3H_7 , C_4H_9 и назовите их.
- 69. Напишите последовательность реакций, с помощью которых из метана можно получить 2,2,3,3 тетраметилбутан.
- 70. Углеводород неразветвленного строения A изомеризуется в вещество B, которое при дегидрировании образует соединение C, применяемое в синтезе каучука. Приведите формулы веществ A, B и C. Напишите уравнения реакций.
- 71. При крекинге углеводорода А образуются два других углеводорода с одинаковым числом углеродных атомов. Углеводород с меньшей относительной молекулярной массой В при дегидрировании образует вещество С, использующееся в синтезе каучука. Приведите формулы веществ А, В, С. Напишите уравнение реакций.

- 72. Какой объем водорода (н.у.) выделится при каталитическом дегидрировании метилциклогексана массой 49 г в толуол, если реакция протекает с выходом 75% от теоретического?
- 73. Определите молекулярную формулу предельного углеводорода, если известно, что при полном сгорании 8,6 г его образовалось 13,44 л (н.у.) оксида углерода (IV).
- 74. В веществе А содержится 83,33% углерода по массе и водород. Установите возможные структурные формулы А.
- 75. Напишите уравнения реакций, при помощи которых из метана и неорганических реагентов можно получить бутан.
- 76. Напишите структурные формулы соединений по их названиям: 2-метилпента, 2,5,6-триметилоктан, 3,3-диэтилгексан, 2-метил-4-изопропилнонан. Изобразите структурные формулы изомеров алкана C_6H_{14} и назовите их.
- 77. При сгорании алкана массой 3,6 г образуется оксид углерода (IV) объемом 5,6 л (н.у.). Какой объем кислорода, приведенный к нормальным условиям, потребуется для реакции.
- 78. Напишите уравнения реакций, которые нужно провести для осуществления следующих превращений:

$$Al_4C_3 \rightarrow CH_4 \rightarrow CH_3Br \rightarrow C_2H_6 \rightarrow CO_2 \rightarrow CO \rightarrow CH_4.$$

Укажите условия протекания реакций.

- 79. Какие из перечисленных ниже соединений являются изомерами: а) 2-метилгексан; б) 3-метилгептан; в) 3-этилгексан; г) 2,2-диметилгептан; д) 2,4-диметилгексан; е)2-метилоктан? Дать определение изомеров.
- 80. Органическое вещество содержит углерод (массовая доля 84,21%) и водород (15,79%). Плотность паров вещества по воздуху составляет 3,93. Определите формулу этого вещества.

- 81. Напишите структурные формулы изомерных углеводородов состава C_6H_{14} Назовите их. Укажите изомеры, содержащие третичные атомы углерода.
- 82. Укажите ошибки в названиях следующих углеводородов, дайте правильные названия: а) 2-этил-6-изопропилгексан; б) 2,2-диметил-1-изопропилпентан; в) 4-изобутил-7,7-диметилоктан.
- 83. Напишите формулы радикалов: метила, этила, *н*-бутила, амила, *изо*-пропила, *изо*-бутила, *втор*-бутила, *трет*-бутила.
- 84. При помощи каких реакций можно осуществить следующие превращения:

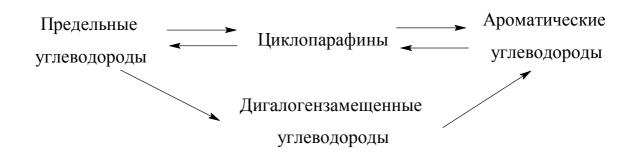
a)
$$CH_4 \longrightarrow CH_3Cl \longrightarrow C_2H_6 \longrightarrow C_2H_5Cl \longrightarrow C_3H_8$$

- $6) C \longrightarrow CH_4 \longrightarrow CH_3Cl \longrightarrow C_3H_8 \longrightarrow C_3H_7Br$
- 85. Сколько кислорода необходимо для сжигания метана: а) массой 4 г; б) количеством вещества 0,1 моль; в) объемом 10 л?
- 86. Приведите структурные формулы следующих разветвленных алканов, содержащихся в нефти: а) пристан $C_{19}H_{40}$; б) фитан $C_{20}H_{42}$. Назовите их по номенклатуре IUPAC.
- 87. Приведите структурные формулы следующих изоалканов, имеющих высокие октановые числа: а) изооктан C_8H_{18} ; б) триптан C_7H_{16} ; в) неогексан C_6H_{14} . Назовите их по номенклатуре IUPAC.
- 88. Охарактеризуйте состав и физические свойства твердых алканов нефти парафина и церезина. В каких фракциях нефти они содержатся.
- 89. Напишите структурные формулы всех алканов с пятью атомами углерода в главной цепи, плотность паров которых по водороду равна 50. Назовите их по систематической номенклатуре.
- 90. Сколько граммов метилового спирта образуется при неполном окислении 5 молей метана?

4.2. Циклоалканы (нафтены, цикланы)

В различных нефтях циклоалканы содержатся в количестве от 40 до 70%. Моноциклические нафтены представлены в основном производными циклопентана и циклогексана. Кроме моноциклических нафтенов присутствуют и бициклические, трициклические и полициклические углеводороды.

В бензиновые фракции попадают циклоалканы, имеющие в молекуле от 5 до 10 атомов углерода ($C_5 - C_{10}$), т.е. циклопентан, циклогексан и их гомологи.


Во фракциях 200-350°С (керосино-газойлевых) значительную долю составляют бициклические и трициклические углеводороды.

В более высококипящих фракциях могут содержаться углеводороды, имеющие в молекуле 4 и 5 колец.

Задания для самостоятельно решения

- 91. Углеводород циклического строения, не имеющий ответвлений в циклической цепи, имеет плотность паров по воздуху 1,931. Массовая доля углерода в этом веществе составляет 85,7%. Определите формулу углеводорода и напишите его структурную формулу.
- 92. При сгорании циклоалкана массой 7 г образуется оксид углерода массой 22 г. Какой объем кислорода, измеренный при нормальных условиях, расходуется при этом?
- 93. Для сжигания некоторого объема циклопарафина требуется шестикратный объем кислорода. Рассчитайте максимальную массу гидроксида бария, которая может вступить в реакцию с продуктом горения 1 л (н.у.) этого парафина.
- 94. Определите формулу циклоалкана, на сгорание которого затрачивается объем кислорода в 9 раз больший, чем объем паров циклоалкана. Назовите этот циклоалкан, если известно, что его углеводородный скелет имеет неразветвленное строение.

- 95. Составьте уравнения реакций: а) гидрирования циклобутана; б) гидрогалогенирования циклопропана; в) галогенирования циклопропана; г) полного окисления циклопентана.
- 96. При сгорании 1 л паров циклопарафина получается 6 л углекислого газа. Какой объем кислорода при этом расходуется? (Все объемы измеряются при одинаковых условиях).
- 97. Напишите формулу циклопарафина, при сгорании паров которого получается в 5 раз больший объем оксида углерода (IV), чем объем исходного парафина, измеренный при тех же условиях.
- 98. Напишите формулу циклопарафина, на сгорание паров которого расходуется в 6 раз больший объем кислорода.
- 99. Сколько различных циклопарафинов соответствуют молекулярной формуле C_5H_{10} ? Изобразите их структурные формулы и напишите названия.
- 100. Составьте уравнения реакций, при помощи которых можно получить: а) циклобутан из бутана; б) бутан из циклобутана; в) оксид углерода (IV) из циклопропана; г) бензол из гексана.
- 101. Согласно приведенной схеме, составьте уравнения химических реакций.

- 102. Напишите структурные формулы соединений:
- а) 1,1-диметилциклобутан;
- б) 1,1,2,2-тетраметилциклобутан;
- в) 1-бром-2-метилциклогексан;
- г) 1,3-диметилциклогексен;

- д) изопропилциклогексан;
- е) 1,3-дихлорциклопентан.

103. Углеводород А, плотность которого при нормальных условиях равна 2,5 г/л, не обесцвечивает водный раствор перманганата калия, а при взаимодействии с водородом в присутствии платины дает смесь двух веществ. Определите структуру А.

104. Напишите структурные формулы соединений:

а) циклогептан; б) этилциклогексан;

в) 1,3-диметилциклопентан; г) 1,2-дихлорциклопентан;

д) 1,2-диметилциклопропан; е) 1,1,2-триметилциклопентан.

105. Осуществите превращения по схеме

$$C_6H_{14} \rightarrow C_6H_{12}Cl_2 \rightarrow C_6H_{12} \rightarrow C_6H_6$$

106. Какой объем воздуха расходуется для полного сжигания смеси циклобутана и бутена объемом 10 л? Объемы газов измерены при одинаковых условиях.

107. Циклогексен массой 12,3 г подвергли гидрированию. Продукт гидрирования сожгли, получив оксид углерода (IV) объемом 13,44 л (н.у.) Определите выход продукта гидрирования, если выход продуктов горения – количественный.

108. Гексахлоран (гексахлорциклогексан) является продуктом реакции присоединения максимального количества хлора к молекуле бензола. Он применяется как ядохимикат для борьбы с вредными насекомыми и с болезнями растений, для уничтожения сорняков. Сколько г хлора потребуется для превращения 39 г бензола в гексахлоран?

109. Два углеводорода А и Б, имеющие циклическое строение, являются соседними членами гомологического ряда. Массовая доля углерода в обоих веществах А и Б составляет 85,71%. Относительная плотность смеси А и Б по водороду составляет 29,4. Определите формулы углеводородов А и Б. К какому гомологическому ряду они относятся? Изобразите структурные формулы изомеров веществ А и Б. Рассчитайте массовые доли газов в их смеси.

110. Закончите уравнения следующих реакций:

- 111. Напишите структурные формулы: а) метилциклопентана; б) 1,2-диметил-циклогексана; в) 3-этилциклогексена; г) 2-метилциклогексана; д) 3-бром-циклогексанона; е) циклопентиламина; ж) 2-метилциклобутанкарбоновой кислоты.
- 112. Напишите структурные формулы изомерных циклоалканов C_7H_{14} с шестичленным, пятичленным и четырехчленным кольцом. Назовите их.
- 113. Напишите структурные формулы всех стереоизомерных циклобутандикарбоновых кислот.
- 114. Получите из соответствующих ациклических дигалогенопроизводных: а) метилциклопропан; б) 1,2-диметилциклобутан.
- 115. Сравните устойчивость циклопропана, циклобутана, циклопентана и циклогексана. Какие циклы наиболее устойчивы? Какими реакциями это можно подтвердить?
- 116. Напишите и назовите все изомеры в ряду циклобутана с бруттоформулой C_6H_{12} . Обратите внимание на *цис-транс-* и *стереоизомерию*.
- 117. Пиролизом кальциевых солей дикарбоновых кислот получают: 1) метилциклопентан; 2) 1,2-диметилциклогексан. Напишите уравнения соответствующих реакций.
- 118. Назовите приведенные на рисунке изомеры состава $C_{10}H_{20}$:

Какие виды изомерии представлены.

- 119. Определите теоретическое количество водорода в л, выделяющегося при дегидрировании 135 г циклогексана. Условия нормальные.
- 120. Для количественного анализа нафтенов, содержащих шестичленные циклы, используют реакцию дегидрирования на платиновом катализаторе. Сколько граммов декалина содержалось в исходной пробе, если после его дегидрирования образовалось 1,28 г нафталина.

4.3. Алкены (олефины)

Ранее считалось, что алкены либо не содержатся в нефтях, либо содержатся в незначительных количествах. Но в конце 80-х годов XX века было установлено, что нефти некоторых месторождений Восточной Сибири и Татарии содержат до 20% алкенов. Это соединения высокой молекулярной массы и, по-видимому, образуются под воздействием естественного радиоактивного излучения в условиях залегания.

Ненасыщенные углеводороды содержатся в продуктах термической и термокаталитической переработки нефтяных фракций: в газах и жидких продуктах термического и каталитического крекинга, пиролиза, коксования и т.д.

Задания для самостоятельно решения

- 121. Промышленным способом получения дивинила из нефтяного сырья является дегидрирование бутилена. Составьте уравнение этой реакции.
- 122. В нефтехимической промышленности получают спирты взаимодействием воды с непредельными углеводородами. Укажите, какой углеводород может дать этанол и какой бутанол-2.

- 123. Сколько изомерных алкенов могут соответствовать эмпирической формуле C_5H_{10} ? Напишите структурные формулы этих изомеров и назовите их.
- 124. Какую массу бромной воды с массовой долей брома 1,6% может обесцветить пропилен объемом 1,12 л (н.у.)?
- 125. Смесь метана и этилена объемом 400 мл (н.у.) обесцветила бромную воду с массовой долей брома 3,2% массой 40 г. Определите объемную долю этилена в смеси.
- 126. Алкен нормального строения содержит двойную связь при первом углеродном атоме. Образец этого алкена массой 0,7 г присоединил бром массой 1,6 г. Определите формулу алкена и назовите его.
- 127. Какой объем водорода, измеренный при нормальных условиях, может присоединить смесь газов массой 15,4 г, которая содержит этилен (массовая доля 54,5%), пропилен (27,3%) и бутилен (18,2%)?
- 128. Приведите не менее трех химических реакций, в результате которых может быть получен этилен. Укажите необходимые условия протекания реакций.
- 129. Рассчитайте выход продукта реакции (в % от теоретического), если при взаимодействии 5,6 л этилена (н.у.) с бромом получено 42,3 г 1,2-дибромэтана.
- 130. Какой объем этилена можно окислить кислородом объемом 10 л для получения ацетальдегида? Объемы газов измерены при одинаковых условиях.
- 131. Этиленовый углеводород массой 7 г присоединяет 2,24 л (н.у.) бромоводорода. Определите молярную массу и строение этого углеводорода, если известно, что он является цис-изомером.
- 132. Четыре ненасыщенных углеводорода имеют одинаковый состав (по массе): 85,7% углерода и 14,3% водорода. Установите формулы этих углеводородов, если плотности их паров по воздуху равны 0,97; 1,45; 1,93; 2,41 соответственно.

- 133. Напишите формулы строения 2-метилбутена-2, 3-этилгептена-3, трансдихлорэтена, цис-бутена-2.
- 134. Напишите формулы строения изомерных углеводородов, представляющих собой газы с относительной плотностью по водороду, равной? Какие из них обесцвечивают раствор перманганата калия? Составьте уравнения реакций этих углеводородов с бромной водой. Назовите все вещества.
- 135. Углеводород относится к гомологическому ряду этилена. Напишите его формулу строения, зная, что 0,21 г его присоединяет 0,80 г брома.
- 136. При пропускании смеси этилена с метаном через склянку с бромом масса склянки увеличилась на 8 г. Вычислите объем прореагировавшего газа.
- 137. Чтобы очистить от примеси гексана гомолог этилена состава C_6H_{12} , у которого двойная связь делит молекулу на 2 симметричные части, его обработали бромом, затем перегонкой освободили продукт реакции от гексана и, наконец, этот продукт нагрели с цинком. Объясните сущность этого способа очистки соответствующими уравнениями реакций.
- 138. Какой объем этилена должен вступить в реакцию с водородом, чтобы образовалось 3 г этана?
- 139. Напишите формулу строения вещества, образующегося в результате присоединения брома: а) к пропилену; б) изобутилену.
- 140. Поясните правило Марковникова на примере реакции присоединения хлорида иода IC1 к 2-метилпропену.
- 141. Какие олефины могут быть получены при дегидрировании: а) изобутана; б) диметилэтилметана; в) 2-метилпентана; г) пропана? Напишите их структурные формулы.
- 142. Какие углеводороды и в каком количестве получаются при дегидратации 10 кг: а) этилового спирта; б) пропилового спирта?

- 143. Сколько граммов брома могут присоединить: а) бутен-2 массой 2,8 г; б) α,β-метилэтилен массой 3,5 г; в) *несимм*-метилпропилэтилен массой 4,2 г? Каковы их бромные числа?
- 144. Напишите формулы геометрических изомеров: а) бутена-2; б) пентена-2; в) 2,5-диметилгексена-3; г) 3-метилпентена-2.
- 145. Напишите уравнения внутримолекулярной дегидратации следующих спиртов:

Назовите образующиеся углеводороды.

- 146. Получите 4-метилпентен-2 из 4-метилпентена-1 и окислите концентрированным раствором КмпО₄. Напишите уравнения реакций.
- 147. Сколько граммов галогенопроизводного образуется в результате взаимодействия пропилена объемом 1,12 л с хлороводородом?
- 148. Определите теоретическое количество этилового спирта в г, образующегося при гидратации 5 молей этилена.
- 149. Напишите структурные формулы всех алкенов состава C_8H_{16} , образующихся при каталитическом дегидрировании 2,2,4-триметилпентана, и назовите их по систематической номенклатуре.
- 150. С помощью каких реакций можно очистить пропан от примесей пропена.

4.4. Алкадиены (диолефины)

В продуктах парофазного крекинга и пиролиза может содержатся от 5 до 15% диолефинов. Это – бутадиен, пиперилен, циклопентадиен.

Задания для самостоятельно решения

151. При гидрировании бутадиена-1,3 массой 8,1 г получили смесь бутана и бутена-1. При пропускании этой смеси через раствор брома образовался 1,2-

бромбутан массой 10,8 г. Определите массовые доли углеводородов в полученной смеси.

- 152. Напишите структурные формулы соединений по их названиям:
- 2,3-диметилбутадиен-1,3; 2-метилбутадиен-1,3; пентадиен-2,3; 2-хлорбутадиен-1,3.
- 153. Назовите по систематической номенклатуре следующие диеновые углеводороды:

a
$$G$$
 H_3C CH_3 C

- 154. Сколько брома может присоединиться к 30 г бутадиена-1,3?
- 155. Чем объясняется высокая химическая активность диеновых углеводородов? В какие реакции они вступают? Приведите примеры.
- 156. Напишите все изомеры для углеводорода С₅Н₈.
- 157. Назовите по систематической номенклатуре IUPAC следующие углеводороды:

a
$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

- 158. Составьте структурные формулы углеводородов:
- а) 2,5-диметилгексадиен-1,5;
- в) 2,7-диметилоктадиен-3,5;

б) гексадиен-2,4;

- г) 2-этилпентадиен-1,3.
- 159. Предложите схему получения изопрена из пентановой фракции нефти.
- 160. Напишите уравнения реакций получения хлоропрена из метана и необходимых неорганических веществ.
- 131. Напишите уравнения реакций между следующими веществами:
- а) 2-метилбутадиеном-1,3 и бромоводородом;
- б) пентадиеном-1,4 и хлором.
- 162. Напишите уравнения взаимодействия брома со следующими углеводородами:
- а) пентадиеном-1,4;
- б) пентадиеном-1,3.
- 163. Исходным сырьем для получения хлоропренового каучука является ацетилен: ацетилен \rightarrow винилацетилен \rightarrow хлоропрен \rightarrow полимер хлоропрена.

Напишите уравнения реакций получения хлоропренового каучука. Чем отличается каучук от резины?

- 164. Вулканизация каучука связана с взаимодействием серы с молекулами каучука. Приведите схему реакции серы с натуральным и бутадиеновым каучуками.
- 165. Осуществите следующие превращения:
- a) $CH_2 = CH CH = CH_2 \rightarrow ClCH_2 CHBr CHBr CH_3$;
- 166. Получите 1,5-гексадиен по реакции Вюрца, по реакции Гриньяра-Вюрца.
- 167. Предложите пути синтеза бутадиена-1,3, используя в качестве исходного вещества ацетилен. Сравните эти способы с методом получения бутадиена 1,3 из бутана или газов термической переработки нефти.

168. Напишите уравнения реакций дегидратации следующих соединений (катализатор – оксид алюминия):

a
$$H_3C$$

B H_3C

CH₃
 H_3C

CH₃
 H_3C

CH₃

OH

- 169. Бутадиен-1,3 по-разному реагирует с водородом. Напишите уравнения реакций гидрирования бутадиена-1,3:
- а) натрием (в спирте);
- б) водородом в присутствии катализатора (никель, платина)
- 170. Напишите структурные формулы всех диеновых углеводородов, при гидрировании которых получается 2-метилпентан. Назовите их по номенклатуре IUPAC.
- 171. Напишите структурные формулы: а) 2-метилбутадиена-1,3; б) 2-метилгексадиена-1,5; в) 2,4-диметилпентадиена-2,4; г) 2 метилпентадиена-1,3. 172. Назовите углеводороды:

- 173. Напишите структурные формулы изомерных диеновых углеводородов C_5H_8 . Назовите их. Обратите внимание на *цис-транс-изомерию*.
- 174. Напишите схему получения хлоропрена из ацетилена.

- 175. Напишите все возможные изомеры, получающиеся при присоединении одной молекулы HBr: а) к хлоропрену; б) к изопрену. Укажите возможные условия и катализаторы.
- 176. Приведите схему технического получения дивинила по способу Лебедева. Укажите условия реакции.
- 177. Получите дивинил и изопрен дегидрогенизацией соответствующих смесей предельных и этиленовых углеводородов.
- 178. Предложите схему получения изопрена из пентановой фракции нефти.
- 179. Для идентификации и количественного определения алкадиенов в нефтепродуктах используется реакция конденсации диенов с малеиновым ангидридом. Приведите уравнение реакции, лежащей в основе анализа.
- 180. Какие виды изомерии характерны для алкадиенов. Приведите примеры.

4.5. Алкины (ацетиленовые углеводороды)

В нефтях и природных газах ацетиленовые углеводороды не содержатся. Ацетилен (до 1%) может присутствовать в газах процесса пиролиза (700-900°C).

Задания для самостоятельного решения

- 181. Какие виды изомерии характерны для углеводородов гомологического ряда ацетилена? Привести примеры.
- 182. Напишите структурные формулы изомерных ацетиленовых углеводородов состава C_7H_{12} , главная цепь которых состоит из пяти углеродных атомов, и назовите их.
- 183. Ацетилен массой 15,6 г присоединил хлороводород массой 43,8 г. Установите структуру продукта реакции.
- 184. Рассчитайте элементный состав (в % по массе) изомерных ацетиленовых углеводородов, плотность паров которых по кислороду равна 1,69. Напишите структурные формулы возможных изомеров.

- 185. Какая масса карбида кальция вступила в реакцию с водой, если при этом выделилось 5,6 л ацетилена (н.у.)?
- 186. Составьте уравнение полного сгорания ацетиленового углеводорода, являющегося вторым членом гомологического ряда ацетиленовых углеводородов, и рассчитайте, сколько литров воздуха потребуется для сгорания 5,6 л этого углеводорода.
- 187. Приведите формулу простейшего алкина с разветвленным углеродным скелетом, приведите три реакции, описывающие свойства этого соединения.
- 188. Исходя из ацетилена и неорганических реактивов, получите метан.
- 189. Получите уравнения реакций: а) ацетилен из этилена; б) бутин-2 из бутена-2. Напишите уравнения реакций.
- 190. В трех запаянных ампулах находятся три разных газа: метан, углекислый газ, ацетилен. Опишите, как, основываясь на различии в химических и физических свойствах, можно надежно определить, где какой газ находится. Приведите необходимые уравнения реакций.
- 191. Сколько алкинов могут быть изомерны изопрену? Напишите структурные формулы этих алкинов и назовите их.
- 192. Напишите уравнения реакций, с помощью которых можно осуществить превращения:

1-хлорбутан \to бутен-1 \to 1,2-дибромбутан \to бутин-1.

Укажите условия протекания реакций.

- 193. При гидрировании ацетилена объемом 672 мл (н.у.) получили смесь этана и этилена, которая обесцвечивает раствор брома в тетрахлориде углерода массой 40 г, массовая доля брома в котором составляет 4%. Определите массовые доли углеводородов в полученной смеси.
- 194. При пропускании ацетилена в спиртовой раствор йода получено соединение, содержащее 90,7% йода и 0,7% водорода по массе. Найдите формулу этого вещества.

- 195. Указатель уровня в цистернах с жидким кислородом обычно заполняется тетрабромэтаном, который получают из ацетилена. Напишите схему реакции образования этого соединения.
- 196. Ацетилен, хранящийся в баллоне в виде раствора в ацетоне, очищают, пропуская его через воду и затем через концентрированную серную кислоту. Каково здесь назначение воды и серной кислоты?
- 197. Напишите формулы строения изомерных углеводородов состава C_4H_6 и C_5H_8 .
- 198. Сколько воздуха по объему потребуется для сжигания 1м³ 1-бутина?
- 199. Сколько ацетилена по объему (н.у.) потребуется, чтобы получить 44,25 кг хлоропрена?
- 200. Сколько ацетилена и водорода по объему (н.у.) можно получить из 1042 м³ природного газа, который содержит 0,96 объемных долей, или 96% (по объему), метана?
- 201. Напишите структурные формулы: а) метилацетилена; б) 2,5-диметилгексина-3; в) 3,4-диметилпентина-1; г) 2,2,5-триметилгексина-3; д) 2,7-диметилоктина-3; е) 3,3-диметилбутина-1; ж) 3-метилгексадиина-1,5.
- 202. Напишите структурные формулы: а) диэтилацетилена; б) метилизопропилацетилена; в) пропилизопропилацетилена; г) этилпропилацетилена.
- 203. Какой углеводород получится, если на 3,3-диметилбутен-1 подействовать бромом, а затем избытком спиртового раствора щелочи?
- 204. Напишите структурные формулы изомерных ацетиленовых углеводородов C_7H_{12} , главная цепь которых состоит из пяти углеродных атомов. Назовите их.
- 205. Напишите структурные формулы всех ацетиленовых углеводородов, образующих при гидрировании 2,2-диметилгексана.
- 206. Используйте пропиловый спирт для получения метилацетилена.

- 207. Получите 4-метилпентин-2 из 1-бром-4-метилпентана.
- 208. Сколько кубометров ацетилена можно получить из 700 м³ природного газа Туймазинского месторождения, если в нём содержится 95% метана, а выход ацетилена при пиролизе метана составляет 8,8% от теоретического?
- 209. Приведите схемы реакций получения из ацетилена винилацетата и акрилонитрила.
- 210. Сколько воздуха по объему потребуется для сжигания 0,5 м³ 1-пропина?

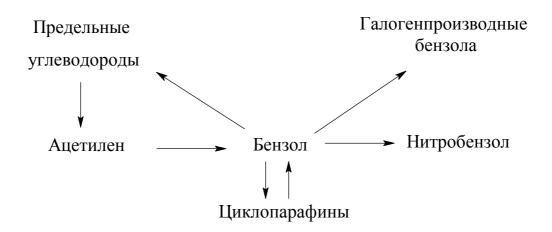
4.6. Ароматические углеводороды (арены)

Ароматические углеводороды (арены) содержатся в различных нефтях в количестве от 5 до 35%.

В бензиновую фракцию попадают ароматические углеводороды, имеющие от 6 до 9 углеродных атомов в молекуле (бензол и его гомологи).

В керосино-газойлевых фракциях значительную долю составляют би- и трициклические структуры. Во фракциях, выкипающих выше 350°С, значительную долю составляют углеводороды смешанного строения. Это полициклические углеводороды, молекулы которых содержат ароматические кольца, нафтеновые кольца и парафиновые цепи.

Задания для самостоятельного решения


- 211. Составьте структурные формулы изомеров, отвечающих формуле C_8H_{10} и содержащих ароматическое кольцо.
- 212. Сколько изомерных гомологов бензола может отвечать формуле C_9H_{12} ? Напишите структурные формулы изомеров и назовите их.
- 213. Напишите уравнения реакций, которые надо провести для осуществления следующих превращений:

Укажите условия протекания реакций.

- 214. Какой объем воздуха, измеренный при нормальных условиях, потребуется для полного сгорания 1,4-диметилбензола массой 5,3 г? Объемная доля кислорода в воздухе составляет 21%.
- 215. При сжигании гомолога бензола массой 0,92 г в кислороде получили оксид углерода (IV), который пропустили через избыток раствора гидроксида кальция. При этом образовался осадок массой 7 г. Определите формулу углеводорода и назовите его.
- 216. Ароматический углеводород, являющийся гомологом бензола, массой 5,3 г, сожгли, получив оксид углерода (IV) объемом 8,96 л (н.у.). Определите формулу углеводорода. Сколько изомеров может иметь этот углеводород среди гомологов бензола? Напишите структурные формулы этих изомеров.
- 217. Из ацетилена объемом 3,36 л (н.у.) получили бензол объемом 2,5 мл. Определите выход продукта, если плотность бензола равна 0,88 г/мл.
- 218. При бромировании бензола в присутствии бромида железа (III) получили бромоводород, который пропустили через избыток раствора нитрата серебра. При этом образовался осадок массой 7,52 г. Вычислите массу полученного продукта бромирования бензола и назовите этот продукт.
- 219. Бензол, полученный дегидрированием циклогексана объемом 151 мл и плотностью 0,779 г/мл, подвергли хлорированию при освещении. Образовалось хлорпроизводное массой 300 г. Определите выход продукта реакции.
- 220. Приведите уравнения реакции, необходимых для превращений:
- а) гексан \to бензол \to циклогексан;
- б) ацетилен \rightarrow бензол \rightarrow гексахлорциклогексан.
- 221. Приведите не менее трех химических реакций, в результате которых может быть получен толуол. Укажите необходимые условия протекания реакций.

- 222. В лаборатории из 25 л ацетилена было получено 16 г бензола. Сколько это составляет (в %) от той массы, которая должна была образоваться согласно уравнению реакции?
- 223. Составьте формулы бромзамещенных толуола, в которых массовая доля брома составляет 46,72%.
- 224. Сколько может существовать изомерных триметилбензолов и тетраметилбензолов? Составьте их формулы строения и укажите, какие из этих соединений можно назвать симметричными.
- 225. Чем отличается по типу реакция брома с бензолом от реакции его с этиленом? Ответ подтвердите, приведя уравнения реакций.
- 226. Действием брома на 78 г бензола было получено столько же граммов бромбензола. Сколько это составляет (в %) от той массы, которая должна образоваться, если весь взятый бензол вступил бы в реакцию?
- 227. К смеси изомерных бутенов-2 и бензола добавили бромной воды до появления слабой окраски и после отмывки избытка брома раствором щелочи смесь высушили и перегнали. Какое вещество было получено в приемнике?
- 228. При сжигании 1,3 г вещества образуется 4,4 г углекислого газа и 0,9 г воды. Плотность паров этого соединения по водороду равна 39. Выведите молекулярную формулу этого вещества.
- 229. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

230. Согласно схеме генетической связи ароматических углеводородов с другими классами органических соединений, приведите соответствующие уравнения реакций:

- 231. Напишите структурные формулы всех изомерных углеводородов бензольного ряда состава C_8H_{10} . Назовите их.
- 232. Напишите структурные формулы: а) 2-метил-3-этилбензола; б) 1,3,5-триметилбензола; в) 1-метил-4-изобутилбензола; г) 1,4-диизопропилбен-зола.
- 233. Напишите структурные формулы: а) о-метилэтилбензола; б) п-диэтилбензола; в) .м-метилизопропилбензола.
- 234. Напишите структурные формулы: а) фенилпропана; б) фенилгексана; в) фенилэтана; г) фенилбутана.
- 235. Напишите для бензола реакции (с образованием однозамещенных производных): а) бромирования; б) нитрования; в) сульфирования. Назовите образующиеся соединения.
- 236. Сколько бромбензола можно получить при бромировании бензола массой 117 г бромом массой 316 г? Какое из исходных веществ останется в избытке?
- 237. Напишите формулы строения промежуточных и конечных продуктов в следующих схемах:

- 238. Какой теоретический объем воздуха, содержащего 28 % кислорода, необходим для окисления 156 г бензола до малеинового ангидрида?
- 239. Какое теоретическое количество (в Γ) терефталевой кислоты получается при окислении 2 молей n-ксилола?
- 240. Из бензола парофазным дегидрированием в присутствии катализаторов получают дифенил и *n*-терфенил высокотемпературные теплоносители. Приведите схемы реакций и укажите условия.

4.7. Гетероатомные соединения нефти

Помимо углеводородов, в нефтях содержатся также органические соединения, в молекулах которых, кроме углерода и водорода, могут содержаться сера, кислород или азот.

Кислородсодержащие соединения в нефтях представлены, в основном, фенолами и кислотами. Содержание кислот в различных нефтях колеблется от десятых долей до 3%. Кислоты в нефтях могут быть алифатические, нафтеновые и ароматические.

Более 60% добываемых в настоящее время нефтей — это сернистые и высокосернистые нефти, т.е. с содержанием общей серы более 1%. Сернистые соединения в нефтях — это меркаптаны (RSH), сульфиды (R-S-R), дисульфиды (R-S-S-R), циклические сернистые соединения (тиофаны и тиофены). Кроме того, в нефтях содержатся и неорганические сернистые соединения (элементная сера S и сероводород H_2S).

Азотистые соединения нефти — это пиридин, хинолин, составляющие группу азотистых оснований, а также пиррол, индол, которые условно относят к нейтральным азотистым соединениям.

Задания для самостоятельного решения

- 241. При взаимодействии 115 г бензольного раствора пиррола с металлическим калием выделилось 1,12 л газа (н.у.). Вычислите массовые доли веществ в исходном растворе.
- 242. Напишите структурные формулы: а) 2-пропилгексагидропиридина; б) 2-метил-4,5-дигидроксиметил-3-гидроксипиридина.
- 243. Напишите структурные формулы трех ароматических соединений, имеющих молекулярную формулу $C_6H_5NO_2$.
- 244. Напишите формулы всех изомерных соединений, имеющих в своем составе только пуриновую систему гетероциклов и бутильный радикал.
- 245. Выпишите из перечисленных формул фенолы: $C_6H_6O_2$, $C_6H_6O_3$, $C_6H_{12}O_3$, C_7H_8O , $C_8H_{10}O$, $C_7H_{14}O$, $C_6H_{14}O$. Напишите формулы строения для фенолов, имеющихся в этом ряду.
- 246. Какой из гетероциклов содержит наибольшую массовую долю азота: пиридин, пурин или пиримидин.
- 247. При сжигании смеси двух изомерных органических соединений образовался азот объемом 5,376 л (н.у.). Массовая доля азота в исходных веществах равна 31,1%. Рассчитайте массу исходной смеси веществ, напишите их структурные формулы и дайте им названия.
- 248. При каталитическом гидрировании 6,3 г пиридина поглотилось 1,7 л водорода (н.у.). С каким выходом прошло гидрирование?
- 249. Составьте структурные формулы всех возможных изомеров:
- а) метилфурана; б) диметилтиофена; в) метилпиррола. Назовите их.
- 240. Почему обработка бензола, полученного из каменного угля, 92%-ной серной кислотой при комнатной температуре позволяет очистить его от примеси тиофена?
- 241. Напишите уравнения реакций пиррола и фурана с бромоводородом. Ку-

да присоединяется протон?

- 242. Изобразите электронные формулы следующих соединений:
- a) CH₃SH; б) C₂H₅SC₂H₅; в) H₂S.
- 243. Приведите структурные формулы меркаптанов, аналогичных следующим спиртам: метиловому, этиловому, пропиловому, изобутиловому. Назовите эти вещества по систематической номенклатуре.
- 244. Отметьте сходство и различие в строении и свойствах пиридина и бензола.
- 245. Напишите структурные формулы кислот: а) пропионовой; б) масляной; в) изомасляной; г) триметилуксусной; д) валериановой; е) пальмитиновой; ж) стеариновой. Назовите по номенклатуре IUPAC.
- 246. Напишите формулу амина, имеющего в своем составе фенильный и бутильный радикал. Напишите формулу его изомера, который можно рассматривать как производное аммиака со всеми замещенными на радикалы атомами водорода.
- 247. Напишите формулы всех изомерных соединений, имеющих в своем составе только пиррольное кольцо и три метильных радикала.
- 248. Нафталин представляет собой конденсированную систему, состоящую из двух бензольных колец. Сколько может быть изомерных дихлорнафталинов? Напишите структурные формулы всех изомеров.
- 249. Какие классы органических соединений могут быть представлены в нефти в качестве неуглеводородных соединений? Приведите примеры.
- 250. Приведите схемы реакций, иллюстрирующих амфотерный характер пиррола.
- 251. Осуществите превращения, напишите уравнения реакций и назовите соединения:

252. Осуществите превращения, напишите уравнения реакций и назовите соединения:

253. Осуществите превращения, напишите уравнения реакций и назовите соединения:

$$C_2H_5SH \xrightarrow{KOH} A \xrightarrow{S} B \xrightarrow{C_2H_5SH} C$$

254. Осуществите превращения:

$$C_2H_5SSC_2H_5$$
 \xrightarrow{KOH} $A \xrightarrow{H_2}$ $B \xrightarrow{CH_3COCI}$ C

Напишите уравнения реакций и назовите соединения.

- 255. Напишите уравнения реакций: а) хлороводорода и п-толуидина; б) бромоводорода и α-нафтиламина; в) серной кислоты с 1 молем N,N-диэтиланилина; г) серной кислоты с 2 молями N,N-диэтиланилина; д) серной кислоты с α-нафтиламином. Назовите продукты реакций.
- 256. Напишите для индола реакции хлорирования, сульфирования, нитрования и укажите условия их проведения. Назовите все вещества.
- 257. Напишите для карбазола реакции хлорирования, сульфирования, нитрования и укажите условия их проведения. Назовите все вещества.
- 258. Получите тиофен, исходя из ацетилена. Напишите для тиофена следующие реакции: а) с серной кислотой (85%-ной); б) с азотной кислотой в уксусном ангидриде; в) с йодом в присутствии оксида ртути (II).
- 259. Приведите схемы реакций, протекающих при процессах термическом обессеривании и при гидроочистке нефти или нефтепродуктов на примере бутилмеркаптана. Укажите условия и продукты реакции.

- 260. Приведите схему окисления диалкилсульфидов, содержащихся в бензиновых фракциях, с образованием сульфоксидов и сульфонов.
- 269. Найти массу метана, при полном сгорании которой (с образованием жидкой воды) выделяется теплота, достаточная для нагревания 100~ г воды от 20^{0} С до 30^{0} С. Мольную теплоемкость воды принять равной 75,3~Дж/моль \cdot K^{0} .
- 270. Сколько молекул диоксида углерода находится в 1 л природного газа, если объемное содержание CO_2 составляет 0,03% (н.у.)?

5. ОСНОВНЫЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ

Первым промышленным методом превращения тяжёлых углеводородов нефти в лёгкие является термический крекинг — расщепление больших молекул этих углеводородов под действием тепла и образование меньших молекул более лёгких углеводородов. В химическом отношении крекинг является сложным процессом, так как сырьё представляет собой смесь многих углеводородов, и они подвергаются превращениям в различных направлениях.

В настоящее время в нефтепереработке наиболее распространены каталитические процессы получения топлив — каталитический крекинг, риформинг, гидроочистка, алкилирование, изомеризация и гидрокрекинг. Каталитические гидроочистка и гидрокрекинг используются также для производства высококачественных нефтяных масел и парафинов.

Присутствие катализаторов позволяет: 1) снизить энергию активации реакции; 2) повысить скорость реакции; 3) понизить температуру процесса.

Задания для самостоятельного решения

271. Опишите сущность процесса термического крекинга нефтепродуктов. В каких условиях осуществляется данный процесс? Какие углеводороды могут образоваться при термическом крекинге октана?

- 272. Приведите схему термического крекинга октадекана.
- 273. Приведите схемы реакций деалкилирования этиллциклопентана и этилбензола протекающих при термическом крекинге.
- 274. Приведите схемы реакций расщепления пентана и 2-метилбутана, протекающих при термическом крекинге.
- 275. При термическом крекинге образуются олефины и диеновые углеводороды, которые вступают в реакцию циклизации. Какие соединения при этом получатся из этилена и пентадиена-1,3?
- 276. Можно ли представить химическими уравнениями процессы, происходящие: а) при перегонке нефти; б) при крекинге нефти. Дайте обоснованный ответ.
- 277. Какой из газов крекинга нефти служит для получения изопропилового спирта?
- 278. Чем отличается состав газов термического и каталитического крекингов? Для каких целей эти газы используются?
- 279. Что такое ароматизация нефти? Составьте уравнения реакций, поясняющие этот процесс.
- 280. Что такое октановое число? Влияет ли строение углеводородов на величину этого числа? Можно ли повысить октановое число бензина, получаемого перегонкой нефти?
- 281. Охарактеризуйте бензин, полученный при термическом и каталитическом крекинге.
- 282. Укажите названия важнейших нефтепродуктов и перечислите области их применения.
- 283. Чем отличается крекинг от пиролиза? Что такое каталитический риформинг?

- 284. Приведите геологические и геохимические аргументы в пользу органической теории происхождения нефти.
- 285. При крекинге нефти образуется этилен, который можно использовать для получения уксусной кислоты. Приведите уравнения соответствующих реакций.
- 286. Вычислите объем кислорода (н.у.), который необходим для сжигания 60 кг бензина, содержащего 80% гептановых изомеров и 20% октановых изомеров.
- 287. Напишите уравнения реакций, которые могут происходить с углеводородом додеканом $C_{12}H_{26}$ при крекинге нефти.
- 288. Что представляет собой нефтяной кокс? Из чего он образуется? Для чего используется? Дайте исчерпывающий ответ.
- 289. Основными процессами, протекающими при ароматизации нефти (каталитический риформинг), является дегидрирование нафтенов и циклизация алканов с одновременным дегидрированием. Составьте схемы образования этими способами: а) бензола; б) толуола.
- 290. Рассчитайте удельную теплоту сгорания синтез-газа, состоящего из 0,5 мольных долей СО и 0,5 мольный долей $\rm H_2$, при стандартных состояниях и 298 $^{\rm o}$ K.
- 291. Рассчитайте стандартный тепловой эффект, константу равновесия реакции получения метанола из H_2 и CO при 298^0 K. Определите температуру, при которой наступит равновесие этой реакции при стандартных состояниях.
- 292. Для чего нужна гидроочистка нефтепродуктов? Кратко охарактеризуйте этот процесс.
- 293. Укажите названия важнейших нефтепродуктов и перечислите области их применения.
- 294. На примере гексена-1 укажите, какие реакции протекают при очистке нефтепродуктов от непредельных соединений серной кислотой.

- 295. Для очистки нефти и нефтепродуктов от соединений серы используют метод гидроочистки. Приведите схемы протекающих химических реакций на примере этилмеркаптана, диэтилсульфида, тиофена, бензтиофена.
- 296. В процессе каталитического риформинга на платиновых катализаторах алканы подвергаются дегидроциклизации с образованием ароматических углеводородов и алкилциклопентанов. Приведите схему протекающих реакций на примере н-гептана, укажите условия и продукты реакций.
- 297. Для получения высокооктановых компонентов бензина используют процесс алкилирования. Приведите схему алкилирования изобутана изобутиленом. Какие изомеры октана при этом образуются.
- 298. Приведите схемы получения высокооктановых компонентов бензина триптана и неогексана алкилированием изобутана пропиленом и этиленом соответственно. Укажите условия процесса.
- 299. Что является сырьем для производства масел. Для чего необходима селективна очистка и депарафинизация масла. Кратко охарактеризуйте эти процессы.
- 300. Приведите примеры реакций дегидрирования, циклизации, ароматизации и изомеризации, протекающих при термическом крекинге.

6. ВАРИАНТЫ КОНТРОЛЬНЫХ ЗАДАНИЙ

Таблица 1 Варианты контрольных заданий

of a fire south										
Номер варианта	Номера задач, относящихся к данному заданию									
01	1	31	61	91	121	151	181	211	241	271
02	2	32	62	92	122	152	182	212	242	272
03	3	33	63	93	123	153	183	213	243	273
04	4	34	64	94	124	154	184	214	244	274
05	5	35	65	95	125	155	185	215	245	275
06	6	36	66	96	126	156	186	216	246	276
07	7	37	67	97	127	157	187	217	247	277
08	8	38	68	98	128	158	188	218	248	278
09	9	39	69	99	129	159	189	219	249	279
10	10	40	70	100	130	160	190	220	250	280
11	11	41	71	101	131	161	191	221	251	281
12	12	42	72	102	132	162	192	222	252	282
13	13	43	73	103	133	163	193	223	253	283
14	14	44	74	104	134	164	194	224	254	284
15	15	45	75	105	135	165	195	225	255	285
16	16	46	76	106	136	166	196	226	256	286
17	17	47	77	107	137	167	197	227	257	287
18	18	48	78	108	138	168	198	228	258	288
19	19	49	79	109	139	169	199	229	259	289
20	20	50	80	110	140	170	200	230	260	290
21	21	51	81	111	141	171	201	231	261	291
22	22	52	82	112	142	172	202	232	262	292
23	23	53	83	113	143	173	203	233	263	293
24	24	54	84	114	144	174	204	234	264	294
25	25	55	85	115	145	175	205	235	265	295
26	26	56	86	116	146	176	206	236	266	296
27	27	57	87	117	147	177	207	237	267	297
28	28	58	88	118	148	178	208	238	268	298
29	29	59	89	119	149	179	209	239	269	299
30	30	60	90	120	150	180	210	240	270	300

ЛИТЕРАТУРА

- 1. Рябов, В.Д. Химия нефти и газа / В.Д. Рябов. Москва: ИД"ФОРУМ", 2012. 336 с.
- 2. Химия нефти и газа. Учебное пособие для вузов / под ред. Проскурякова В.А., Драбкина А.Е. Санкт-Петербург: Химия, 1995.
- 3. ГОСТ Р 51858-2002. «Нефть. Общие технические условия».
- 4. ГОСТ 3900-85. Нефть и нефтепродукты. Методы определения плотности.
- 5. ГОСТ Р 51069-97. Нефть и нефтепродукты. Методы определения плотности, относительной плотности и плотности в градусах API ареометром.
- 6. ГОСТ 33-2000. Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости.
- 7. ГОСТ 30319.1-96. Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки.
- Сарданашвили А.Г. Примеры и задачи по технологии переработки нефти и газа / Сарданашвили А.Г., Львова А.И. Москва: Химия, 1980.
 295 с.

приложения

Приложение 1

Средняя температурная поправка относительной плотности

$ ho_4^{20}$	α	5α	$ ho_4^{20}$	α	5α
0,7000-0,7099	0,000897	0,00448	0,8500-0,8599	0,000699	0,00349
0,7100-0,7199	0,000884	0,00442	0,8600-0,8699	0,000686	0,00343
0,7200-0,7299	0,000870	0,00435	0,8700-0,8799	0,000673	0,00336
0,7300-0,7399	0,000857	0,00428	0,8800-0,8899	0,000660	0,00330
0,7400-0,7499	0,000844	0,00422	0,8900-0,8999	0,000647	0,00323
0,7500-0,7599	0,000831	0,00415	0,9000-0,9099	0,000633	0,00316
0,7600-0,7699	0,000818	0,00410	0,9100-0,9199	0,000620	0,00310
0,7700-0,7799	0,000805	0,00402	0,9200-0,9299	0,000607	0,00303
0,7800-0,7899	0,000792	0,00396	0,9300-0,9399	0,000594	0,00297
0,7900-0,7999	0,000778	0,00386	0,9400-0,9499	0,000581	0,00290
0,8000-0,8099	0,000765	0,00382	0,9500-0,9599	0,000267	0,00283
0,8100-0,8199	0,000752	0,00376	0,9600-0,9699	0,000554	0,00277
0,8200-0,8299	0,000738	0,00369	0,9700-0,9799	0,000541	0,00270
0,8300-0,8399	0,000725	0,00362	0,9800-0,9899	0,000522	0,00261
0,8400-0,8499	0,000712	0,00356	0,9900-1,0000	0,000515	0,00257

Номограмма для определения вязкости масел в зависимости от температуры

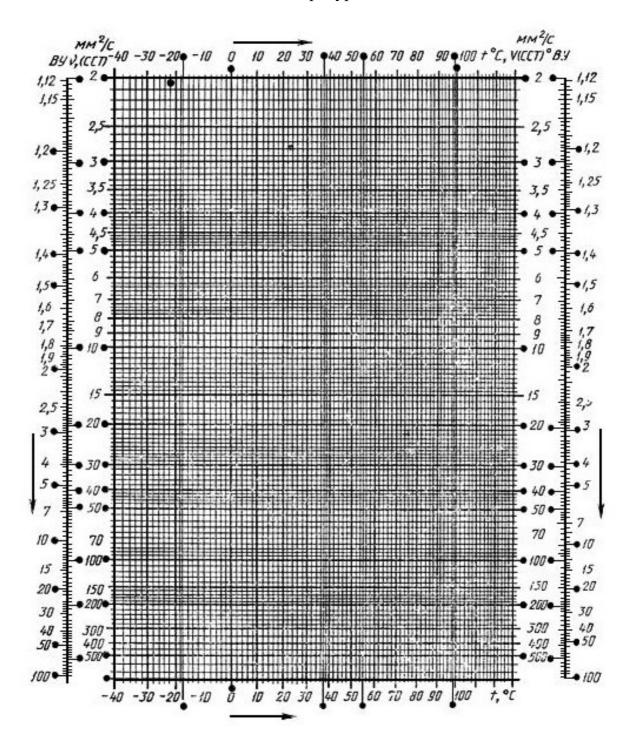
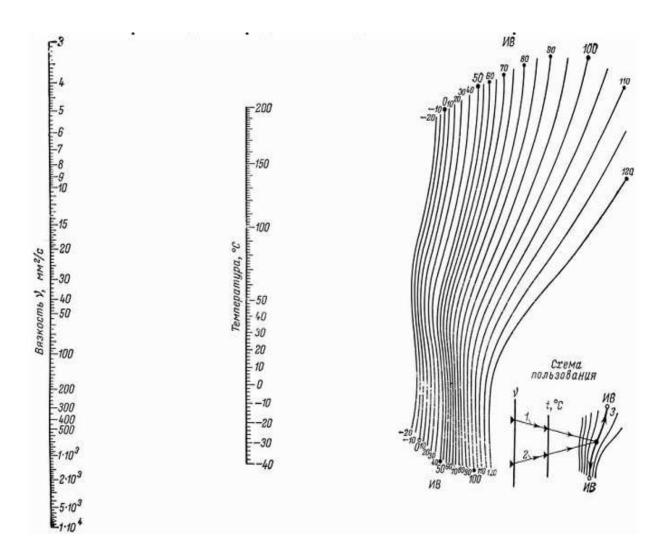
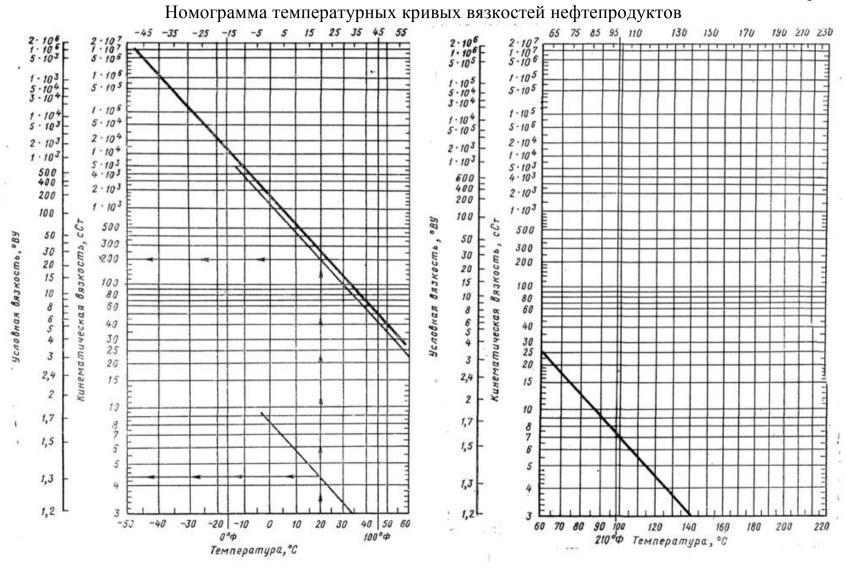
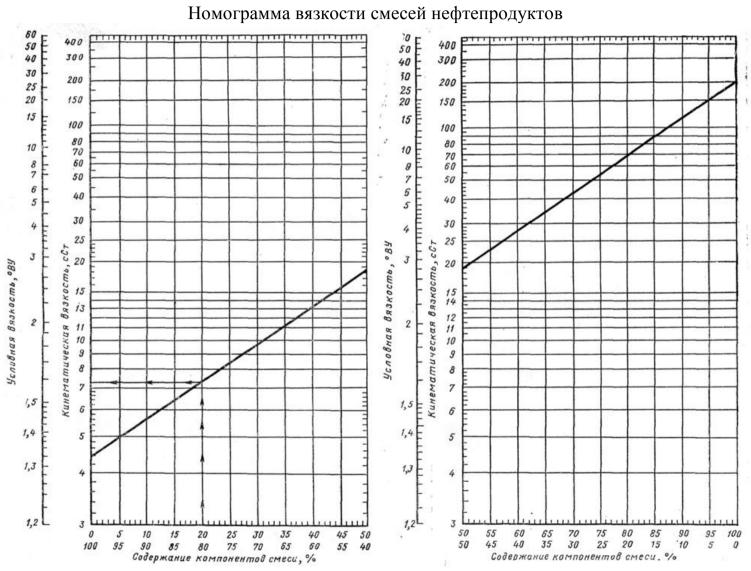



Таблица перевода значений кинематической вязкости (мм 2 /с) в условную ($^\circ$ ВУ)


mm^2/c	°ВУ	mm^2/c	°ВУ	мм ² /с	°ВУ	mm^2/c	°ВУ	мм ² /с	°ВУ
1	1,00	16	2,48	31	4,33	46	6,28	61	8,26
2	1,10	17	2,60	32	4,46	47	6,42	62	8,40
3	1,20	18	2,72	33	4,59	48	6,55	63	8,53
4	1,29	19	2,83	34	4,72	49	6,68	64	8,66
5	1,39	20	2,95	35	4,85	50	6,81	65	8,80
6	1,48	21	3,07	36	4,98	51	6,94	66	8,93
7	1,57	22	3,19	37	5,11	52	7,07	67	9,06
8	1,67	23	3,31	38	5,24	53	7,20	68	9,20
9	1,76	24	3,43	39	5,37	54	7,33	69	9,34
10	1,86	25	3,56	40	5,50	55	7,47	70	9,48
11	1,96	26	3,68	41	5,63	56	7,60	71	9,61
12	2,05	27	3,81	42	5,76	57	7,73	72	9,75
13	2,15	28	3,95	43	5,89	58	7,86	73	9,88
14	2,26	29	4,07	44	6,02	59	8,00	74	10,01
15	2,37	30	4,20	45	6,16	60	8,13	75	10,15

Приложение 4


Номограмма для определения индекса вязкости нефтяных масел

Приложения 5

Приложение 6

Приложение 7 Плотность некоторых газов при нормальных условиях

	Плотность при нормальных условиях (101,3 кПа, 273 К)					
Газ	в жид- ком состоя- нии, кг/л	ком образ-				
Метан	0,3042	0,7168	0,5544			
Этилен	0,3961	1,2605	0,9750			
Этан	0,3722	1,3560	1,0489			
Пропилен	0,5455	1,9149	1,4812			
Пропан	0,5011	2,0037	1,5499			
изо-Бутилен	0,6180	2,5022	1,9355			
изо-Бутан	0,5810	2,6751	2,0770			
н-Бутан	0,6010	2,7023	2,0903			
изо-Пентан	0,6392	3,4302	2,6533			
н-Пентан	0,6455	3,4570	2,6740			
Водород	-	0,0899	0,0695			
Азот	-	1,2505	0,9673			
Кислород	-	1,4290	1,1053			
Воздух (сухой)	-	1,2928	1,0000			
Оксид углерода	-	1,2500	0,9669			
Диоксид угле- рода	-	1,9769	1,5292			
Диоксид серы	-	2,9266	2,2638			
Сероводород	-	1,5384	1,9000			
Водяной пар	-	0,7680	0,5941			

Электронное учебное издание

Геннадий Михайлович **Бутов** Ольга Михайловна **Иванкина**

Сборник задач для самостоятельной работы по курсу «Химия нефти и газа»

Учебное пособие

Электронное издание сетевого распространения

Редактор Матвеева Н.И.

Темплан 2022 г. Поз. № 41. Подписано к использованию 25.07.2022. Формат 60х84 1/16. Гарнитура Times. Усл. печ. л. 4,1.

Волгоградский государственный технический университет. 400005, г. Волгоград, пр. Ленина, 28, корп. 1.

ВПИ (филиал) ВолгГТУ. 404121, г. Волжский, ул. Энгельса, 42a.